Reference: Dekker M, et al. (2023) Phase separation of intrinsically disordered FG-Nups is driven by highly dynamic FG motifs. Proc Natl Acad Sci U S A 120(25):e2221804120

Reference Help

Abstract


The intrinsically disordered FG-Nups in the central channel of the nuclear pore complex (NPC) form a selective permeability barrier, allowing small molecules to traverse by passive diffusion, while large molecules can only translocate with the help of nuclear transport receptors. The exact phase state of the permeability barrier remains elusive. In vitro experiments have shown that some FG-Nups can undergo phase separation into condensates that display NPC-like permeability barrier properties. Here, we use molecular dynamics simulations at amino acid resolution to study the phase separation characteristics of each of the disordered FG-Nups of the yeast NPC. We find that GLFG-Nups undergo phase separation and reveal that the FG motifs act as highly dynamic hydrophobic stickers that are essential for the formation of FG-Nup condensates featuring droplet-spanning percolated networks. Additionally, we study phase separation in an FG-Nup mixture that resembles the NPC stoichiometry and observe that an NPC condensate is formed containing multiple GLFG-Nups. We find that the phase separation of this NPC condensate is also driven by FG-FG interactions, similar to the homotypic FG-Nup condensates. Based on the observed phase separation behavior, the different FG-Nups of the yeast NPC can be divided into two classes: The FG-Nups (mostly GLFG-type) located in the central channel of the NPC form a highly dynamic percolated network formed by many short-lived FG-FG interactions, while the peripheral FG-Nups (mostly FxFG-type) at the entry and exit of the NPC channel likely form an entropic brush.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Dekker M, Van der Giessen E, Onck PR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference