Reference: Cohen JD and Eaton NR (1979) Genetic analysis of multiple drug cross resistance in Saccharomyces cerevisiae: a nuclear-mitochondrial gene interaction. Genetics 91(1):19-33

Reference Help

Abstract


A mutant of the yeast Saccharomyces cerevisiae, cross resistant to several antibiotics, was isolated in our laboratory and subjected to genetic analysis. Tetrad analysis of diploids obtained from crosses between the resistant mutant and a sensitive wild-type strain suggest that the multiple resistance to the five agents, oligomycin (OLI), rhodamine 6G (RHG), tetracycline (TCN), chloramphenicol (CAP) and cycloheximide (CHX) is determined by a single nuclear gene, ant1, and requires several cytoplasmic genes for expression of resistance to oligomycin, rhodamine 6G and tetracycline. --Vegetatively growing diploid clones derived from the cross ant1 [RHO+] X +[RHO+] show mitotic segregation of two phenotypic classes for the drugs OLI, RHG TCN. Diploids derived from the two reciprocal crosses, ant1 [RHO+] X +[RHO-] and ant1 [RHO-] X +[RHO+], fail to exhibit mitotic segregation. These results are consistent with our hypothesis concerning the involvement of cytoplasmic loci. They suggest, in addition, that these loci are associated with mitochondrial DNA (mtDNA). --Evidence for this association is provided by the demonstration of genetic linkage between the cytoplasmic loci involved in the interaction, RHG-1, TCN-1 and OLI-5, and two well-characterized mitochondrial loci, ERY and CAP. --We have mapped the nuclear ant1 locus 3.3 cM from the centromere-linked gene, leu1, on the same side of the centromere of chromosome VII as leu1. --In the light of these findings, we discuss the claims made by several authors of the episomal nature of mutations similar to the one described here, as well as of the possible involvement of yeast 2 mu DNA in such mutations.

Reference Type
Journal Article
Authors
Cohen JD, Eaton NR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference