Reference: Asemoloye MD and Marchisio MA (2023) Synthetic metabolic transducers in Saccharomyces cerevisiae as sensors for aromatic permeant acids and bioreporters of hydrocarbon metabolism. Biosens Bioelectron 220:114897

Reference Help

Abstract


Yeast-based biosensors have great potential for various applications, although the present range of detectable chemicals is still very minimal. This work provides an enlargement of the knowledge on detectable chemicals and creates an additional basis for engineering modular yeast biosensors. Bacterial allosteric transcription factors, such as MarR and PdhR, were recruited to build transducer circuits in Saccharomyces cerevisiae. MarR-based biosensors were designed for the detection of aromatic permeant acids (benzoate and salicylate), whereas the PdhR-expressing yeast cells were engineered for responding to pyruvate. In general, all our engineered strains showed a fast response time and a strong fluorescent output signal to chemical concentrations ranging from 5 mM down to 2 fM. They exhibited versatile dynamic range and were capable of operating in a variety of complex media that might contain any of these compounds. A new milestone in biosensor design is the engineering of inter/intracellular metabolic biosensors that would allow real-time monitoring of either the metabolism of particular compounds, or the detection of their intermediate/end products. Our synthetic cells are applicable to different areas, from adequate real-time detection of aromatic permeant acids to regulation/monitoring of different hydrocarbon metabolisms. The new strains engineered in this study could be of great importance because of the ecological significance of aromatic permeant acids from their formations during either hydrocarbon degradation or metabolism of different chemicals to their involvement in different biological and non-biological systems.

Reference Type
Journal Article
Authors
Asemoloye MD, Marchisio MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference