Reference: Miyao S, et al. (2022) MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing. Biochem Biophys Res Commun 637:203-209

Reference Help

Abstract


Ribosome biogenesis proceeds with the successive cleavage and trimming of the large 47S rRNA precursor, where the RNA exosome plays major roles in concert with the Ski2-like RNA helicase, MTR4. The recent finding of a consensus amino acid sequence, the arch-interacting motif (AIM), for binding to the arch domain in MTR4 suggests that recruitment of the RNA processing machinery to the maturing pre-rRNA at appropriate places and timings is mediated by several adaptor proteins possessing the AIM sequence. In yeast Saccharomyces cerevisiae, Nop53 plays such a role in the maturation of the 3'-end of 5.8S rRNA. Here, we investigated the functions of PICT1 (also known as GLTSCR2 or NOP53), a mammalian ortholog of Nop53, during ribosome biogenesis in human cells. PICT1 interacted with MTR4 and exosome in an AIM-dependent manner. Overexpression of PICT1 mutants defecting AIM sequence and siRNA-mediated depletion of PICT1 showed that PICT1 is involved in two distinct pre-rRNA processing steps during the generation of 60S ribosomes; first step is the early cleavage of 32S intermediate RNA, while the second step is the late maturation of 12S precursor into 5.8S rRNA. The recruitment of MTR4 and RNA exosome via the AIM sequence was required only during the late processing step. Although, the depletion of MTR4 and PICT1 induced stabilization of the tumor suppressor p53 protein in cancer cell lines, the depletion of the exosome catalytic subunits, RRP6 and DIS3, did not exert such an effect. These results suggest that recruitment of the RNA processing machinery to the 3'-end of pre-5.8S rRNA may be involved in the induction of the nucleolar stress response, but the pre-rRNA processing capabilities themselves were not involved in this process.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Miyao S, Saito K, Oshima R, Kawahara K, Nagahama M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference