Reference: Ornelas MY, et al. (2022) Synthetic Platforms for Characterizing and Targeting of SARS-CoV-2 Genome Capping Enzymes. ACS Synth Biol 11(11):3759-3771

Reference Help

Abstract


Essential viral enzymes have been successfully targeted to combat the diseases caused by emerging pathogenic RNA viruses (e.g., viral RNA-dependent RNA polymerase). Because of the conserved nature of such viral enzymes, therapeutics targeting these enzymes have the potential to be repurposed to combat emerging diseases, e.g., remdesivir, which was initially developed as a potential Ebola treatment, then was repurposed for COVID-19. Our efforts described in this study target another essential and highly conserved, but relatively less explored, step in RNA virus translation and replication, i.e., capping of the viral RNA genome. The viral genome cap structure disguises the genome of most RNA viruses to resemble the mRNA cap structure of their host and is essential for viral translation, propagation, and immune evasion. Here, we developed a synthetic, phenotypic yeast-based complementation platform (YeRC0M) for molecular characterization and targeting of SARS-CoV-2 genome-encoded RNA cap-0 (guanine-N7)-methyltransferase (N7-MTase) enzyme (nsp14). In YeRC0M, the lack of yeast mRNA capping N7-MTase in yeast, which is an essential gene in yeast, is complemented by the expression of functional viral N7-MTase or its variants. Using YeRC0M, we first identified important protein domains and amino acid residues that are essential for SARS-CoV-2 nsp14 N7-MTase activity. We also expanded YeRC0M to include key nsp14 variants observed in emerging variants of SARS-CoV-2 (e.g., delta variant of SARS-CoV-2 encodes nsp14 A394V and nsp14 P46L). We also combined YeRC0M with directed evolution to identify attenuation mutations in SARS-CoV-2 nsp14. Because of the high sequence similarity of nsp14 in emerging coronaviruses, these observations could have implications on live attenuated vaccine development strategies. These data taken together reveal key domains in SARS-CoV-2 nsp14 that can be targeted for therapeutic strategies. We also anticipate that these readily tractable phenotypic platforms can also be used for the identification of inhibitors of viral RNA capping enzymes as antivirals.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ornelas MY, Thomas AY, Johnson Rosas LI, Scoville RO, Mehta AP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference