Reference: Mukherjee M and Wang ZQ (2023) A well-characterized polycistronic-like gene expression system in yeast. Biotechnol Bioeng 120(1):260-271

Reference Help

Abstract


Efficient expression of multiple genes is critical to yeast metabolic engineering for the bioproduction of bulk and fine chemicals. A yeast polycistronic expression system is of particular interest because one promoter can drive the expression of multiple genes. 2A viral peptides enable the cotranslation of multiple proteins from a single mRNA by ribosomal skipping. However, the wide adaptation of 2A viral peptides for polycistronic-like gene expression in yeast awaits in-depth characterizations. Additionally, a one-step assembly of such a polycistronic-like system is highly desirable. To this end, we have developed a modular cloning (MoClo) compatible 2A peptide-based polycistronic-like system capable of expressing multiple genes from a single promoter in yeast. Characterizing the bi-, tri-, and quad-cistronic expression of fluorescent proteins showed high cleavage efficiencies of three 2A peptides: E2A from equine rhinitis B virus, P2A from porcine teschovirus-1, and O2A from Operophtera brumata cypovirus-18. Applying the polycistronic-like system to produce geraniol, a valuable industrial compound, resulted in comparable or higher titers than using conventional monocistronic constructs. In summary, this highly-characterized polycistronic-like gene expression system is another tool to facilitate multigene expression for metabolic engineering in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Mukherjee M, Wang ZQ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference