Reference: Trinklein TJ and Synovec RE (2022) Simulating comprehensive two-dimensional gas chromatography mass spectrometry data with realistic run-to-run shifting to evaluate the robustness of tile-based Fisher ratio analysis. J Chromatogr A 1677:463321

Reference Help

Abstract


Untargeted analysis of comprehensive two-dimensional (2D) gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) data has the potential to be hindered by run-to-run retention time shifting. To address this challenge, tile-based Fisher ratio (F-ratio) analysis (FRA) has been developed, which utilizes a supervised, untargeted approach involving a chromatographic segmentation routine termed "tiling" combined with the ANOVA F-ratio statistic to discover class-distinguishing analytes while minimizing false positives arising from shifting. The tiling algorithm is designed to account for retention shifting in both separation dimensions. Although applications of FRA have been reported, there remains a need to thoroughly evaluate the robustness of FRA for different levels of run-to-run retention shifting in order to broaden the scope of its application. To this end, a novel method of simulating GC×GC-TOFMS chromatograms with realistic run-to-run shifting is presented by random generation of low-frequency "shift functions". The dimensionless retention-time precision, <δr>, which is four times the standard deviation in retention time normalized to the peak width-at-base is used as a key modeling variable along with the 2D chromatographic saturation, αe,2D, and within-class relative standard deviation in peak area, RSDwc. We demonstrate that all three of these variables operate together to impact true positive discovery. To quantify the "success" of true positive discovery, GC×GC-TOFMS datasets for various combinations of <δr>, αe,2D, and RSDwc were simulated and then analyzed by FRA using a wide range of relative tile areas (RTA), which is a dimensionless measure of tile size. Since each hit in the FRA hit list was known a priori as either a true or false positive based on the simulation inputs, receiver operating characteristic (ROC) curves were readily constructed. Then, the area under the ROC curve (AUROC) was used as a metric for discovery "success" for various combinations of the modeling variables. Based on the results of this study, recommendations for tile size selection and experimental design are provided, and further supported by comparison to previous tile-based FRA applications. For instance, values for <δr>, αe,2D, and RSDwc obtained from a GC×GC-TOFMS dataset of yeast metabolites suggested an optimum RTA of 6.25, corresponding closely to the RTA of 4.00 employed in the study, implying the simulation results obtained here can be generalized to real datasets.

Reference Type
Journal Article
Authors
Trinklein TJ, Synovec RE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference