Reference: Zhai H, et al. (2022) CRISPR-mediated protein-tagging signal amplification systems for efficient transcriptional activation and repression in Saccharomyces cerevisiae. Nucleic Acids Res 50(10):5988-6000

Reference Help

Abstract


Saccharomyces cerevisiae is an important model eukaryotic microorganism and widely applied in fundamental research and the production of various chemicals. Its ability to efficiently and precisely control the expression of multiple genes is valuable for metabolic engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)-mediated regulation enables complex gene expression programming; however, the regulation efficiency is often limited by the efficiency of pertinent regulators. Here, we developed CRISPR-mediated protein-tagging signal amplification system for simultaneous multiplexed gene activation and repression in S. cerevisiae. By introducing protein scaffolds (SPY and SunTag systems) to recruit multiple copies of regulators to different nuclease-deficient CRISPR proteins and design optimization, our system amplified gene regulation efficiency significantly. The gene activation and repression efficiencies reached as high as 34.9-fold and 95%, respectively, being 3.8- and 8.6-fold higher than those observed on the direct fusion of regulators with nuclease-deficient CRISPR proteins, respectively. We then applied the orthogonal bifunctional CRISPR-mediated transcriptional regulation system to regulate the expression of genes associated with 3-hydroxypropanoic acid production to deduce that CRISPR-associated regulator recruiting systems represent a robust method for simultaneously regulating multiple genes and rewiring metabolic pathways.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhai H, Cui L, Xiong Z, Qi Q, Hou J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference