Reference: Timmermans E, et al. (2022) Sugar Levels Determine Fermentation Dynamics during Yeast Pastry Making and Its Impact on Dough and Product Characteristics. Foods 11(10)

Reference Help

Abstract


Fermented pastry products are produced by fermenting and baking multi-layered dough. Increasing our knowledge of the impact of the fermentation process during pastry making could offer opportunities for improving the production process or end-product quality, whereas increasing our knowledge on the sugar release and consumption dynamics by yeast could help to design sugar reduction strategies. Therefore, this study investigates the impact of yeast fermentation and different sugar concentrations on pastry dough properties and product quality characteristics. First, yeasted pastry samples were made with 8% yeast and 14% sucrose on a wheat flour dry matter base and compared to non-yeasted samples. Analysis of saccharide concentrations revealed that sucrose was almost entirely degraded by invertase in yeasted samples after mixing. Fructans were also degraded extensively, but more slowly. At least 23.6 ± 2.6% of the released glucose was consumed during fermentation. CO2 production during fermentation contributed more to product height development than water and ethanol evaporation during baking. Yeast metabolites weakened the gluten network, causing a reduction in dough strength and extensibility. However, fermentation time had a more significant impact on dough rheology parameters than the presence of yeast. In balance, yeast fermentation did not significantly affect the calculated sweetness factor of the pastry product with 14% added sucrose. Increasing the sugar content (21%) led to higher osmotic stress, resulting in reduced sugar consumption, reduced CO2 and ethanol production and a lower product volume. A darker colour and a higher sweetness factor were obtained. Reducing the sugar content (7%) had the opposite effect. Eliminating sucrose from the recipe (0%) resulted in a shortened productive fermentation time due to sugar depletion. Dough rheology was affected to a limited extent by changes in sucrose addition, although no sucrose addition or a very high sucrose level (21%) reduced the maximum dough strength. Based on the insights obtained in this study, yeast-based strategies can be developed to improve the production and quality of fermented pastry.

Reference Type
Journal Article
Authors
Timmermans E, Bautil A, Brijs K, Scheirlinck I, Van der Meulen R, Courtin CM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference