Reference: Chanprasartsuk OO and Prakitchaiwattana C (2022) Growth kinetics and fermentation properties of autochthonous yeasts in pineapple juice fermentation for starter culture development. Int J Food Microbiol 371:109636

Reference Help

Abstract


Autochthonous yeasts associated with pineapple fermentation were isolated and their fermentation behaviours were investigated for development of specific culture in pineapple winemaking. Autochthonous yeast isolates, Saccharomycodes ludwigii and Hanseniaspora uvarum, were selected due to their generated products of alcohol and 2-phenylethyl acetate, respectively. The fermentation kinetic parameters of selected autochthonous yeasts as single and co-cultures in chaptalized pineapple juice were investigated comparing to commercial Saccharomyces cerevisiae. The ethanol production rate of S'codes ludwigii (0.104%(v/v)/h) during the initial stage of fermentation was relatively slower compared to those of S. cerevisiae (0.129%(v/v)/h) but increased during middle through final stages with similar ethanol content to the commercial S. cerevisiae (~12%(v/v)). In pineapple juice, fructose was firstly assimilated, S'codes ludwigii (K = 0.405) and S. cerevisiae (K = 0.552), while glucose was secondly used, S'codes ludwigii (K = 0.281) and S. cerevisiae (K = 0.217) for first-order kinetic model. In co-cultures, the two isolated strains displayed synergistic behaviours during fermentation. S'codes ludwigii supported the growth of H. uvarum so that it generated more desirable volatile organic compounds (VOCs) at an early stage. Interestingly, the VOCs could not be produced in co-cultures of H. uvarum with the commercial strains. Then, S'codes ludwigii further completed the alcoholic fermentation through final stage. The fermentation performances of co-cultured autochthonous yeasts demonstrated a new approach for successful pineapple winemaking over S. cerevisiae. In addition, growth kinetics and fermentation behaviour, as observed in this study, could be a key information in development of potential substrates and strains for future alcoholic fermentation.

Reference Type
Journal Article
Authors
Chanprasartsuk OO, Prakitchaiwattana C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference