Reference: Breeden L and Nasmyth K (1987) Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48(3):389-97

Reference Help

Abstract


In this paper, we investigate the role of a short repeated sequence (CACGA4) in the cell-cycle regulation of HO. We show that this sequence activates transcription of a heterologous gene in a cell-cycle-dependent fashion indistinguishable from that of the wild-type HO promoter. We also show that, in addition to SWI1 through SWI5, at least five other genes (SWI6 through SWI10) are required for HO transcription. These genes fit into three distinct classes with respect to their targets within the HO promoter. SWI4 and SWI6 are specifically required for CACGA4-mediated activation of transcription. SWI1, SWI2, and SWI5 are required for transcription from sequences physically separate from and independent of the CACGA4 sequences. SWI3 may be required for both. Since all the SWI genes are required for HO transcription, the HO promoter must contain at least two essential upstream activation sequences, which are affected by different trans-acting factors and are subject to different types of control.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Breeden L, Nasmyth K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence