Reference: Wells TN and Fersht AR (1986) Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase. Biochemistry 25(8):1881-6

Reference Help

Abstract


The utilization of enzyme-substrate binding energy in catalysis has been investigated by experiments on mutant tyrosyl-tRNA synthetases that have been generated by site-directed mutagenesis. The mutants are poorer enzymes because they lack side chains that form hydrogen bonds with ATP and tyrosine during stages of the reaction. The hydrogen bonds are not directly involved in the chemical processes but are at some distance from the seat of reaction. The free energy profiles for the formation of enzyme-bound tyrosyl adenylate and the equilibria between the substrates and products were determined from a combination of pre-steady-state kinetics and equilibrium binding methods. By comparison of the profile of each mutant with wild-type enzyme, a picture is built up of how the course of reaction is affected by the influence of each side chain on the energies of the complexes of the enzyme with substrates, transition states, and intermediates (tyrosyl adenylate). As the activation reaction proceeds, the apparent binding energies of certain side chains with the tyrosine and nucleotide moieties increase, being weakest in the enzyme-substrate complex, stronger in the transition state, and strongest in the enzyme-intermediate complex. Most marked is the interaction of Cys-35 with the 3'-hydroxyl of the ribose. Removal of the side chain of Cys-35 leads to no change in the dissociation constant of ATP but causes a 10-fold lowering of the catalytic rate constant. It contributes no net apparent binding energy in the E X Tyr X ATP complex and stabilizes the transition state by 1.2 kcal/mol and the E X Tyr-AMP complex by 1.6 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wells TN, Fersht AR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference