Reference: Mitchel RE and Morrison DP (1986) Inducible error-prone repair in yeast. Suppression by heat shock. Mutat Res 159(1-2):31-9

Reference Help

Abstract


The production of reversion mutations in wild-type, diploid Saccharomyces cerevisiae by the alkylating agents N-methyl-N'-nitro- N-nitrosoguanidine (MNNG) and methylnitrosourea (MNU) was suppressed in cells previously treated with a heat shock, or the protein synthesis inhibitor, cycloheximide. The same cells previously treated with a heat shock, or the protein synthesis inhibitor, cycloheximide. The same treatment after mutagen exposure did not lower the induced mutation frequency. In split-dose experiments, a first MNNG exposure prevented subsequent heat (or cycloheximide) treatment from blocking mutation by a second, later mutagen exposure. These data suggest that, in yeast, MNNG or MNU induces an error-prone DNA-repair system, and that this induction is blocked by protein-synthesis inhibitors. The specificity of this system for different types of DNA damage was investigated using a variety of other mutagenic agents. A prior heat shock did not suppress mutation produced by exposure to ethyl methanesulfonate, ethylnitrosourea, 8-methoxypsoralen + UVA, or gamma-radiation. Partial suppression was observed in cells exposed to methyl methanesulfonate or to 254-nm ultraviolet light. These results indicate that, unlike the SOS system of E. coli, this inducible error-prone process of yeast is responsive to only certain mutagens. Heat shock suppression of mutation produced by MNNG exposure was also demonstrated in wild-type haploid cells, as well as haploid strains mutant in representative genes of the RAD52 epistasis group (rad52, rad53, rad54), the RAD3 epistasis group (rad1, rad2, rad3) and the RAD6 epistasis group (rad9, rad18). The rad6 mutant itself was immutable with MNNG and therefore untestable by these techniques. These data indicate that this error-prone repair system is not absolutely dependent on the integrity of the RAD52 (recombination) or the RAD3 (excision) systems, or on at least some parts of the RAD6 system.

Reference Type
Journal Article
Authors
Mitchel RE, Morrison DP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference