Reference: Windels SFL, et al. (2022) Graphlet eigencentralities capture novel central roles of genes in pathways. PLoS One 17(1):e0261676

Reference Help

Abstract


Motivation: Graphlet adjacency extends regular node adjacency in a network by considering a pair of nodes being adjacent if they participate in a given graphlet (small, connected, induced subgraph). Graphlet adjacencies captured by different graphlets were shown to contain complementary biological functions and cancer mechanisms. To further investigate the relationships between the topological features of genes participating in molecular networks, as captured by graphlet adjacencies, and their biological functions, we build more descriptive pathway-based approaches.

Contribution: We introduce a new graphlet-based definition of eigencentrality of genes in a pathway, graphlet eigencentrality, to identify pathways and cancer mechanisms described by a given graphlet adjacency. We compute the centrality of genes in a pathway either from the local perspective of the pathway or from the global perspective of the entire network.

Results: We show that in molecular networks of human and yeast, different local graphlet adjacencies describe different pathways (i.e., all the genes that are functionally important in a pathway are also considered topologically important by their local graphlet eigencentrality). Pathways described by the same graphlet adjacency are functionally similar, suggesting that each graphlet adjacency captures different pathway topology and function relationships. Additionally, we show that different graphlet eigencentralities describe different cancer driver genes that play central roles in pathways, or in the crosstalk between them (i.e. we can predict cancer driver genes participating in a pathway by their local or global graphlet eigencentrality). This result suggests that by considering different graphlet eigencentralities, we can capture different functional roles of genes in and between pathways.

Reference Type
Journal Article
Authors
Windels SFL, Malod-Dognin N, Pržulj N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference