Reference: Kawai K, et al. (2021) Effects of glass transition and hydration on the biological stability of dry yeast. J Food Sci 86(4):1343-1353

Reference Help

Abstract


The purpose of this study was to determine the effects of glass transition and hydration on the storage stability of baker's dry yeast (Saccharomyces cerevisiae). The glass transition temperature (Tg ) of the yeast decreased with increase in water activity (aw ), and aw at which glass transition occurs at 25 °C was determined as the critical aw (awc ). From mechanical relaxation measurements at 25 °C, the yeast exhibited a large mechanical relaxation above the awc , and the degree of mechanical relaxation increased gradually with increasing aw . This behavior corresponded to a gradual increase in molecular mobility with increasing aw in the rubbery liquid state. Freezable water was observed from aw ≥0.810, and the proportion of freezable water increased with increasing aw . Examination of the effect of aw on the residual biological activity of yeast samples stored at 25 °C for 30 days revealed maximum residual biological activity at aw = 0.225 to 0.432. In the lower aw range, the residual biological activity decreased because of oxidation of lipids. In the higher aw range, the residual biological activity decreased gradually with increasing aw . The yeast samples maintained a relatively high residual biological activity, because they could maintain relatively low molecular mobility even in the rubbery liquid state, as suggested by their mechanical relaxation behavior. At aw ≥0.809, residual activity decreased to a negligible value. This could be explained by the appearance of secondary hydrate water (freezable water). Hydrate water protects yeast cells from lipid oxidation but reduces the Tg . As a result, the yeast cells are stabilized maximally only at the awc . PRACTICAL APPLICATION: Although the growth rate of yeast cells becomes negligible below a certain aw , the biological activity of dry yeast decreases gradually during storage. The fact that dry yeast can be maximally stabilized at the awc is practically useful as a criterion for controlling storage stability. In addition, it was found that a remarkable reduction in the molecular mobility, which is otherwise ordinarily increased due to the glass-to-rubber transition, is prevented in yeast. It is possible that the crystallization of amorphous sugar can be prevented by yeast extract. The suggested effect is expected to result in enhanced quality of carbohydrate-based foods.

Reference Type
Journal Article
Authors
Kawai K, Sato K, Lee K, Koseki S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference