Reference: Pačnik K, et al. (2021) Identification of novel genes involved in neutral lipid storage by quantitative trait loci analysis of Saccharomyces cerevisiae. BMC Genomics 22(1):110

Reference Help

Abstract


Background: The accumulation of intracellular fat depots is a polygenic trait. Therefore, the extent of lipid storage in the individuals of a species covers a broad range and is determined by many genetic factors. Quantitative trait loci analysis can be used to identify those genetic differences between two strains of the same species that are responsible for the differences in a given phenotype. We used this method and complementary approaches to identify genes in the yeast Saccharomyces cerevisiae that are involved in neutral lipid storage.

Results: We selected two yeast strains, the laboratory strain BY4741 and the wine yeast AWRI1631, with a more than two-fold difference in neutral lipid content. After crossing, sporulation and germination, we used fluorescence activated cell sorting to isolate a subpopulation of cells with the highest neutral lipid content from the pool of segregants. Whole genome sequencing of this subpopulation and of the unsorted pool of segregants implicated several loci that are involved in lipid accumulation. Three of the identified genes, PIG1, PHO23 and RML2, were investigated in more detail. Deletions of these genes and the exchange of the alleles between the two parental strains confirmed that the encoded proteins contribute to neutral lipid storage in S. cerevisiae and that PIG1, PHO23 and RML2 are the major causative genes. Backcrossing of one of the segregants with the parental strains for seven generations revealed additional regions in the genomes of both strains with potential causative genes for the high lipid accumulation phenotype.

Conclusions: We identified several genes that contribute to the phenotype of lipid accumulation in an allele-specific manner. Surprisingly, no allelic variations of genes with known functions in lipid metabolism were found, indicating that the level of storage lipid accumulation is determined by many cellular processes that are not directly related to lipid metabolism.

Reference Type
Journal Article
Authors
Pačnik K, Ogrizović M, Diepold M, Eisenberg T, Žganjar M, Žun G, Kužnik B, Gostinčar C, Curk T, Petrovič U, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference