Reference: Abramova IM, et al. (2020) [Ways of nutritional value increasing of distillary grain fiber]. Vopr Pitan 89(5):110-118

Reference Help

Abstract


In the process of grain processing for ethyl alcohol, practically only carbohydrates are consumed, which are presented mainly in the form of starch. The remaining components (protein, fats, fiber, minerals) in transit pass into the grain fiber remaining after distillation of the alcohol from the mash. Distillery grain fiber surpasses wheat bran in its indicators, since during the processing it is enriched with biomass of alcohol yeast. In addition, there is a technological possibility of its additional enrichment with protein, amino acids, and vitamins due to changes in the modes of alcoholic fermentation. The aim of the work was to assess the influence of the mode and conditions of alcoholic fermentation on the composition of distillery grain fiber. Material and methods. Under laboratory conditions, samples of grain fiber of alcohol production were obtained by the method of fermentation samples from wheat under various fermentation conditions. In the obtained samples, the following parameters were determined: protein according to Barnstein, crude protein, vitamins B1, B2, B6, E, as well as the amino acid composition. The volume fraction of ethyl alcohol, the mass concentration of fermentable carbohydrates, and the concentration of yeast cells were determined in intermediate products of alcohol production. Results and discussion. Studies on the effect of yeast from various manufacturers on fermentation rates, biomass growth and grain fiber composition showed the advantage of race Y-717 in terms of alcohol accumulation (11.5% vol.), Fermentation rate (56 hours) and yeast cell concentration (260 million/cm3), which was 15-30% more than in other options. However, from the point of view of increasing the content of protein according to Barnstein and crude protein in samples of grain fiber with yeast Y-717, an increase of only 3-4% was noted compared with other options. This was associated with a decrease in the concentration of yeast by 72 h of fermentation due to autolysis. Studies on the influence of the initial yeast concentration on the growth of biomass, the fermentation rate and grain fiber indices showed that with an increase in the initial yeast concentration from 15 to 45 million/cm3, the fermentation time reduced to 48 h, the biomass growth at the end of fermentation was 20%, the protein in grain fiber increased by 15%, the content of vitamins B1, B2, B6 and E as well as amino acids increased by 13-17%. Conclusion. According to the results of the studies, the technological possibility of enriching distillery grain fiber with protein, amino acids, and vitamins due to a change in the fermentation process during the processing of grain raw materials to alcohol is shown. In particular, this could be achieved through the use of yeast with a high growth rate, by increasing the concentration of yeast biomass, shortening the fermentation period and preventing yeast autolysis at the maturation stage.

Reference Type
Journal Article
Authors
Abramova IM, Bessonov VV, Bogachuk MN, Krivchenko VA, Makarenko MA, Sokurenko MS, Solovyov AO, Turshatov MV, Shevyakova LV
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference