Reference: Pentz JT, et al. (2020) Ecological Advantages and Evolutionary Limitations of Aggregative Multicellular Development. Curr Biol 30(21):4155-4164.e6

Reference Help

Abstract


All multicellular organisms develop through one of two basic routes: they either aggregate from free-living cells, creating potentially chimeric multicellular collectives, or they develop clonally via mother-daughter cellular adhesion. Although evolutionary theory makes clear predictions about trade-offs between these developmental modes, these have never been experimentally tested in otherwise genetically identical organisms. We engineered unicellular baker's yeast (Saccharomyces cerevisiae) to develop either clonally ("snowflake"; Δace2) or aggregatively ("floc"; GAL1p::FLO1) and examined their fitness in a fluctuating environment characterized by periods of growth and selection for rapid sedimentation. When cultured independently, aggregation was far superior to clonal development, providing a 35% advantage during growth and a 2.5-fold advantage during settling selection. Yet when competed directly, clonally developing snowflake yeast rapidly displaced aggregative floc. This was due to unexpected social exploitation: snowflake yeast, which do not produce adhesive FLO1, nonetheless become incorporated into flocs at a higher frequency than floc cells themselves. Populations of chimeric clusters settle much faster than floc alone, providing snowflake yeast with a fitness advantage during competition. Mathematical modeling suggests that such developmental cheating may be difficult to circumvent; hypothetical "choosy floc" that avoid exploitation by maintaining clonality pay an ecological cost when rare, often leading to their extinction. Our results highlight the conflict at the heart of aggregative development: non-specific cellular binding provides a strong ecological advantage-the ability to quickly form groups-but this very feature leads to its exploitation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, Ratcliff WC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference