Reference: Amadi OC, et al. (2020) Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon 6(7):e04566

Reference Help

Abstract


Multienzyme complex has attracted increased attention in biofuel technology. They offer solutions to effective degradation of complex plant material into fermentable sugars. Microorganisms, especially bacteria and fungi, are well studied for their ability to produce enzymes complex unlike yeast. Yeast strain isolated from mushroom farm was studied for simultaneous production of cellulase, xylanase and ligninase enzymes using lignocellulose waste as substrates. A response surface methodology (RSM) involving Box-Behnken design (BBD) was used to investigate interaction between variables (moisture content, inoculum size, initial pH, incubation time) that affect enzyme production. Crude filtrate was partially purified and characterised. Yeast strain identified as Saccharomyces cerevisiae SCPW 17 was finally studied. Evaluation of lignocellulose waste for enzyme complex production revealed corn cob to be most effective substrate for cellulase, xylanase and ligninase production with enzyme activity of 17.63 ± 1.45 U/gds, 29.35 ± 1.67 U/gds and 150.75 ± 2.01 μmol/min respectively. Time course study showed maximum enzyme complex production was obtained by day 6 with cellulase activity of 12.5 U/gds, xylanase 48.3 U/gds and ligninase 90.8 μmol/min. Using RSM involving BBD, maximum enzyme activity was found to be 19.51 ± 0.32 U/gds, 56.86 ± 0.38 U/gds, 408.17 ± 1.04 μmol/min for cellulaase, xylanase and ligninase respectively. The developed models were highly significant at probability level of P = 0.0001 and multiple correlation co-efficient (R2) was 0.9563 for cellulase, 0.9532 for xylanase and 0.9780 for ligninase. Enzyme complex was stable at varying pH and temperature conditions. Saccharomyces cerevisiae (SCPW 17) studied produced enzyme complex which can be used for bioconversion of biomass to value-added chemicals.

Reference Type
Journal Article
Authors
Amadi OC, Egong EJ, Nwagu TN, Okpala G, Onwosi CO, Chukwu GC, Okolo BN, Agu RC, Moneke AN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference