Reference: Morales Herrera DS, et al. (2020) Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis (LbNDT1). Heliyon 6(7):e04331

Reference Help

Abstract


Nicotinamide adenine dinucleotide (NAD) is one of the central molecules involved in energy homeostasis, cellular signaling and antioxidative defense systems. Consequently, its biosynthetic pathways and transport systems are of vital importance. The nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT), a key enzyme in the biosynthesis of NAD, is distributed in all domains of life and exhibits various isoforms in free-living organisms in contrast with intracellular parasites, which displays a single enzyme. In Leishmania braziliensis a unique cytosolic NMNAT has been reported to date and the mechanisms through which adequate levels of NAD are maintained among the different sub-cellular compartments of this parasite are unknown. Experimental evidences have related the transport of NAD to the Nucleotide Transporters (NTTs) family, whose members are located in the cytoplasmic membrane of parasitic life organisms. Additionally, the Mitochondrial Carrier Family (MCF), a group of proteins located in the membrane of internal organelles such as the mitochondria of free life organisms, has been implicated in NAD transport. Applying bioinformatics tools, the main characteristics of the MCF were found in a transporter candidate that we have designated as Nicotinamide Adenine Dinucleotide Transporter 1 of L. braziliensis (LbNDT1). The expression of LbNDT1 was tested both in axenic amastigotes and promastigotes of L. braziliensis, through immunodetection using polyclonal avian antibodies produced in this study. N-glycosylation of LbNDT1 was observed in both stages. Additionally, a possible partial mitochondrial distribution for LbNDT1 in amastigotes and a possible glycosomal location in promastigotes are proposed. Finally, the capability of LbNDT1 to transport NAD was confirmed by complementation assays in Saccharomyces cerevisiae. Our results demonstrate the existence of LbNDT1 in L. braziliensis becoming the first NAD transporter identified in protozoan parasites to date.

Reference Type
Journal Article
Authors
Morales Herrera DS, Contreras Rodríguez LE, Rubiano Castellanos CC, Ramírez Hernández MH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference