Reference: Mechoud MA, et al. (2020) Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Appl Environ Microbiol 86(14)

Reference Help

Abstract


The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the Saccharomyces cerevisiae Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with GUA1 (S. cerevisiae GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.IMPORTANCESaccharomyces cerevisiae is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mechoud MA, Pujol-Carrion N, Montella-Manuel S, de la Torre-Ruiz MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference