Reference: Powles J and Ko K (2018) Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential. F1000Res 7:139

Reference Help

Abstract


Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and "inactive" rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species. Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein.

Reference Type
Journal Article
Authors
Powles J, Ko K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference