Reference: Chen H, et al. (2019) High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Microb Cell Fact 18(1):195

Reference Help

Abstract


Background: The biological synthesis of high value compounds in industry through metabolically engineered microorganism factories has received increasing attention in recent years. Valencene is a high value ingredient in the flavor and fragrance industry, but the low concentration in nature and high cost of extraction limits its application. Saccharomyces cerevisiae, generally recognized as safe, is one of the most commonly used gene expression hosts. Construction of S. cerevisiae cell factory to achieve high production of valencene will be attractive.

Results: Valencene was successfully biosynthesized after introducing valencene synthase into S. cerevisiae BJ5464. A significant increase in valencene yield was observed after down-regulation or knock-out of squalene synthesis and other inhibiting factors (such as erg9, rox1) in mevalonate (MVA) pathway using a recyclable CRISPR/Cas9 system constructed in this study through the introduction of Cre/loxP. To increase the supplement of the precursor farnesyl pyrophosphate (FPP), all the genes of FPP upstream in MVA pathway were overexpressed in yeast genome. Furthermore, valencene expression cassettes containing different promoters and terminators were compared, and PHXT7-VS-TTPI1 was found to have excellent performance in valencene production. Finally, after fed-batch fermentation in 3 L bioreactor, valencene production titer reached 539.3 mg/L with about 160-fold improvement compared to the initial titer, which is the highest reported valencene yield.

Conclusions: This study achieved high production of valencene in S. cerevisiae through metabolic engineering and optimization of expression cassette, providing good example of microbial overproduction of valuable chemical products. The construction of recyclable plasmid was useful for multiple gene editing as well.

Reference Type
Journal Article
Authors
Chen H, Zhu C, Zhu M, Xiong J, Ma H, Zhuo M, Li S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference