Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) is a powerful technique for in-depth metabolome analysis with high quantification accuracy. Unlike conventional LC-MS, it analyzes chemical-group-based submetabolomes and uses the combined results to represent the whole metabolome. Due to analysis time and cost constraint, not all submetabolomes can be profiled and thus knowledge of chemical group classification is important in guiding submetabolome selection. Herein we report a study of determining the distribution of functional groups of compounds in a database and then examine how well we can experimentally analyze the major chemical groups in two representative samples (i.e., human plasma and yeast). We developed a computer algorithm to classify chemical structures according to their functional groups. After removing lipids which are targeted molecules in lipidomic analysis, inorganic species and other molecules that are unique to drug, food, plant, and environmental origins, five groups (i.e., amine, phenol, hydroxyl, carboxyl, and carbonyl) are found to be the dominant classes. In the databases of MCID (2683 filtered metabolites), HMDB (5506), KEGG (11598), YMDB (1107), and ECMDB (1462), 94.7%, 85.7%, 86.4%, 85.7%, and 95.8% of the filtered metabolites belong to one or more of the five groups, respectively. These groups can be analyzed in four-channel CIL LC-MS where hydroxyls (H), amines and phenols (A), carboxyls (C), and carbonyls or ketones/aldehydes (K) are separately profiled as individual channels using dansyl and DmPA labeling reagents. A total of 7431 peak pairs were detected with 6109 unique-mass pairs from plasma, while 5629 pairs with 4955 unique-mass pairs were detected in yeast. Compared to group distributions of database compounds, hydroxyl-containing metabolites were severely underdetected, which might indicate that the current method is less than optimal for analyzing this group of metabolites. As a result, the overall experimental coverage is likely significantly lower than the database-derived coverage. In short, this study has shown that high metabolome coverage is theoretically attainable by analyzing only the H, A, C, and K submetabolomes and the group classification information should be helpful in guiding future analytical method development and choices of submetabolomes to be analyzed.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
| Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Site | Modification | Modifier | Source | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
| Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
| Evidence ID | Analyze ID | File | Description |
|---|