Reference: Kamel M, et al. (2019) Repeatability in protein sequences. J Struct Biol 208(2):86-91

Reference Help

Abstract


Low complexity regions (LCRs) in protein sequences have special properties that are very different from those of globular proteins. The rules that define secondary structure elements do not apply when the distribution of amino acids becomes biased. While there is a tendency towards structural disorder in LCRs, various examples, and particularly homorepeats of single amino acids, suggest that very short repeats could adopt structures very difficult to predict. These structures are possibly variable and dependant on the context of intra- or inter-molecular interactions. In general, short repeats in LCRs can induce structure. This could explain the observation that very short (non-perfect) repeats are widespread and many define regions with a function in protein interactions. For these reasons, we have developed an algorithm to quickly analyze local repeatability along protein sequences, that is, how close a protein fragment is from a perfect repeat. Using this algorithm we identified that the proteins of the yeast Saccharomyces cerevisiae are depleted in short repeats (approximate or not) of odd-length, while the human proteins are not, that the fish Danio rerio has many proteins with repeats of length two and that the plant Arabidopsis thaliana has an unusually large amount of repeats of length seven. Our method (REpeatability Scanner, RES, accessible at http://cbdm-01.zdv.uni-mainz.de/~munoz/res/) allows to find regions with approximate short repeats in protein sequences, and helps to characterize the variable use of LCRs and compositional bias in different organisms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kamel M, Mier P, Tari A, Andrade-Navarro MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference