Reference: Kirkin V (2020) History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J Mol Biol 432(1):3-27

Reference Help

Abstract


Autophagy, self-eating, is a pivotal catabolic mechanism that ensures homeostasis and survival of the cell in the face of stressors as different as starvation, infection, or protein misfolding. The importance of the research in this field was recognized by the general public after the Nobel Prize for Physiology or Medicine was awarded in 2016 to Yoshinori Ohsumi for discoveries of the mechanisms of autophagy using yeast as a model organism. One of the seminal findings of Ohsumi was on the role ubiquitin-like proteins (UBLs)-Atg5, Atg12, and Atg8-play in the formation of the double-membrane vesicle autophagosome, which is the functional unit of autophagy. Subsequent work by several groups demonstrated that, like the founding member of the UBL family ubiquitin, these small but versatile protein and lipid modifiers interact with a plethora of proteins, which either directly regulate autophagosome formation, for example, components of the Atg1/ULK1 complex, or are involved in cargo recognition, for example, Atg19 and p62/SQSTM1. By tethering the cargo to the UBLs present on the forming autophagosome, the latter proteins were proposed to effectively act as selective autophagy receptors. The discovery of the selective autophagy receptors brought a breakthrough in the autophagy field, supplying the mechanistic underpinning for the formation of an autophagosome selectively around the cytosolic cargo, that is, a protein aggregate, a mitochondrion, or a cytosolic bacterium. In this historical overview, I highlight key steps that the research into selective autophagy has been taking over the past 20 years. I comment on their significance and discuss current challenges in developing more detailed knowledge of the mechanisms of selective autophagy. I will conclude by introducing the new directions that this dynamic research field is taking into its third decade.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Kirkin V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference