Reference: Wilcoxen SE, et al. (1988) Two forms of RPO41-dependent RNA polymerase. Regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression. J Biol Chem 263(25):12346-51

Reference Help

Abstract


We have identified two chromatographically separable forms of mitochondrial RNA polymerase from Saccharomyces cerevisiae which utilize different DNA templates. One form is only active in a nonselective assay utilizing a poly[d(A-T)] template. The other form selectively initiates from a mitochondrial promoter consensus sequence. Both enzymes can be extracted from yeast mitochondria and all components are encoded by nuclear genes. The possibility that these two activities represent core and holoenzyme forms of the multicomponent mitochondrial RNA polymerase is supported by our observation that both enzymes are absent from a strain bearing a disrupted copy of the RPO41 gene (Greenleaf, A. L., Kelly, J. L., and Lehman, I. R. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 3391-3399). The two enzyme activities are differentially regulated by carbon source; the nonselective enzyme is repressed during growth on glucose relative to the selective enzyme. The 5-fold increase in RNA polymerase activity on a nonrepressing carbon source correlates with the increased level of transcript production from mitochondrial DNA. These results suggest that the mitochondrial RNA polymerase and, in consequence, mitochondrial transcription are regulated by carbon catabolite control.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wilcoxen SE, Peterson CR, Winkley CS, Keller MJ, Jaehning JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference