Reference: Clary GL, et al. (1987) Substrate specificity of choline kinase. Arch Biochem Biophys 254(1):214-21

Reference Help

Abstract


The substrate specificity of choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from brewer's yeast has been examined using multiple analogs of choline, most of which have been reported to be a substrate of one or another choline-using system from other sources. In contrast to many such systems, choline kinase from brewer's yeast has been found to have relatively stringent and straight-forward structural requirements for its substrates. It is hypothesized that there are at least four points of interaction of the substrate with the enzyme--one for the hydroxyalkyl side chain and one for each of the three substituents on the quaternary nitrogen. Of the latter, one site seems relatively more sterically hindered than the other two. Short, single or double alkyl substitutions on the quaternary nitrogen are possible without a large loss of substrate capacity of the analog. Thus N,N-dimethyl-N-propylethanolamine had a relative Vmax of 116% and a relative Vmax 96% that of choline and a Km of 68 +/- 15 microM [nearly four times that of choline itself (18 microM)]. However, N-butyl-N,N-dimethylethanolamine and N,N,N-triethylethanolamine were very poor substrates. Analogs with substituents on the quaternary nitrogen of longer chain length were without activity as were aromatic derivatives. None of the bisquaternary compounds of the general structure HOCH2CH2N+(CH3)2-(CH2)n-N+(CH3)2CH2CH2OH (n = 2-10) showed any substrate capacity, as well. Restrictions on the hydroxyethyl side chain were also severe. One additional methylene group in this chain greatly reduced substrate capacity of the analog and two additional ones eliminated it entirely, as did almost any substituent on the beta carbon. A single (but not a double) substituent on the alpha carbon was moderately tolerated, however. Thus alpha-methylcholine and N-methyl-2-hydroxymethylpiperidine were substrates (although the latter one was a poor one) but beta-methylcholine and N-methyl-3-hydroxypiperidine were not. Such information may be of use toward designing cholinergic probes targeting specific enzyme or metabolic functions.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Clary GL, Tsai CF, Guynn RW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference