Reference: Cummings DJ, et al. (1985) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique "plasmids". J Mol Biol 185(4):659-80

Reference Help

Abstract


During senescence in the filamentous fungus Podospora anserina, specific regions of the mitochondrial genome, termed senDNA are excised, ligated and amplified. We have cloned in their entirety three such autonomously replicating plasmids, alpha, beta and epsilon senDNA. None of these plasmids displayed cross-hybridization nor did we detect any significant DNA homology by computer analysis. The complete DNA sequence of the 2.5 kb alpha, the 5.5 kb epsilon and about 3.4 kb of the 9.8 kb beta senDNA is presented (kb = 10(3) base-pairs). These sequences were analyzed for the presence of consensus sequences common to introns, and it was found that alpha senDNA has the characteristics of a group II intron, epsilon senDNA contains three group I introns, and beta senDNA did not show relevant sequences in the 3.4 kb examined. Comparison of the 5' and 3'-flanking sequences of alpha senDNA with oxi 3 (Co I) amino acid sequences from Neurospora crassa and Saccharomyces cerevisiae revealed significant homology and provided strong support that the excised alpha senDNA itself consists entirely of an intron. Upstream from the oxi 3 gene a transfer RNA cysteine sequence was detected. beta senDNA contained four tRNA sequences, aspartic acid, serine, valine and tryptophan, and sequences homologous to URFC (untranslated reading frame C) as well as two new URFs. epsilon senDNA contained sequences homologous to ATPase 8 and URFl; URFl was interrupted by three group I introns. The excision site sequences, as located by S1 nuclease mapping were unique for each senDNA. Analysis for repeated units showed that each plasmid contained elements which could be involved in secondary structure required for the alignment of distal ends preparatory to excision. These results are interpreted in terms of the structural requirements of mobile elements including the possible involvement of reverse transcriptase in the excision-ligation-amplification process.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Cummings DJ, MacNeil IA, Domenico J, Matsuura ET
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference