Reference: Hu X and Zheng W (2018) Chemical Probes in Sirtuin Research. Prog Mol Biol Transl Sci 154:1-24

Reference Help

Abstract


Sirtuins refer to a family of intracellular enzymes that are the yeast silent information regulator 2 (sir2) protein homologs found in organisms from all the three kingdoms of life. This family of enzymes primarily catalyze the protein Nɛ-acyl-lysine deacylation reaction despite the report for a type of bacterial/fungal sirtuins to robustly catalyze a protein mono-ADP-ribosylation reaction, however, these two group transfer reactions employ the redox coenzyme β-nicotinamide adenine dinucleotide (β-NAD+) as the obligatory cosubstrate. Since 2000, in addition to histone proteins, more and more nonhistone proteins have also been identified as native substrates for the sirtuin-catalyzed deacylation, consistent with the ever-increased demonstration that this enzymatic reaction plays an important regulatory role in a variety of cellular processes, such as gene transcription and metabolism. This latter role is also consistent with the absolute dependence on β-NAD+ of the deacylation reaction catalyzed by sirtuin family members. The sirtuin-catalyzed deacylation has further been proposed as a contemporary therapeutic target for human diseases, such as cancer, neurodegenerative and metabolic diseases. In order to fully tap the therapeutic potential of the sirtuin-catalyzed deacylation, the past few years have witnessed a tremendous advancement in mechanistic elucidation, chemical modulator (inhibitor and activator) development, (chemical) biological and pharmacological exploration of the sirtuin-catalyzed deacylation reaction. During the journey of this knowledge advancement, the use of carefully designed chemical probes has played an elegant role. This chapter will delineate the development and application of these chemical probes in sirtuin research.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Review
Authors
Hu X, Zheng W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference