Reference: Baralle M and Baralle FE (2018) The splicing code. Biosystems 164:39-48

Reference Help

Abstract


This issue dedicated to the code of life tackles very challenging and open questions in Biology. The genetic code, brilliantly uncovered over 50 years ago is an example of a univocal biological code. In fact, except for very few and marginal variations, it is the same from bacteria to man, the RNA stretch: 5' GUGUUC 3' reads as the dipeptide: Val-Phe in bacteria, in yeast, in Arabidopsis, in zebra fish, in mouse and in human. A degree of ambiguity is possible if mutations are introduced in the tRNAs in a way that the anticodon reads one amino acid but the aminoacyl-transferase attaches a different one onto the tRNA. These were the very useful suppressor genes that aided greatly the study of bacterial genetics. Other biological codes however, are more akin to social codes and are less amenable to an unambiguous deciphering. Legal and ethical codes, weather we like it or not, are flexible and depend on the structure and history of the society that has produced them, as well as a specific point in time. The codes that govern RNA splicing have similar characteristics. In fact, the splicing code depends on a myriad of different factors that in part are influenced by the background in which they are read such as different cells, tissues or developmental stages. Given the complexity of the splicing process, the construction of an algorithm that can define exons or their fate with certainty has not yet been achieved. However a substantial amount of information towards the deciphering of the splicing code has been gathered and in this manuscript we summarize the point reached.

Reference Type
Journal Article | Review
Authors
Baralle M, Baralle FE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference