Reference: Farrell LB, et al. (1988) Reprogrammed expression of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Expression in vitro from a chemically synthesized gene and import into isolated mitochondria. Eur J Biochem 173(1):131-7

Reference Help

Abstract


A synthetic gene has been designed and constructed by total chemical synthesis as a first step in the functional relocation from the mitochondrion to the nucleus of a gene encoding subunit 9 of the yeast mitochondrial ATPase complex. This gene (NAP9) incorporates codons frequently used in nuclear genes of Saccharomyces cerevisiae and additionally includes a series of unique restriction enzyme cleavage sites to facilitate future systematic manipulations of the gene and its protein product. Following the expression of the NAP9 gene by transcription and translation in vitro, a radiolabelled protein was produced which displayed a gel electrophoretic mobility and solubility in chloroform/methanol characteristic of the authentic subunit 9 proteolipid encoded in vivo by the mitochondrial oli1 gene. In order to achieve import into mitochondria of yeast subunit 9, a fusion was made between the NAP9 gene and DNA encoding the cleavable presequence of the nuclearly encoded precursor to subunit 9 from Neurospora crassa. Following expression in vitro, the resultant fusion protein was imported and appropriately processed by isolated yeast mitochondria. The import of yeast subunit 9 was less efficient than that observed in parallel import experiments with yeast subunit 8 attached to the same presequence or with the naturally occurring intact N. crassa subunit 9 precursor. Yeast subunit 9 lacking a leader sequence is not imported into mitochondria but, unlike subunit 8, it does not embed itself into the outer membrane, in spite of its highly hydrophobic character.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Farrell LB, Gearing DP, Nagley P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference