Reference: Gupta SK, et al. (2017) Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One 12(8):e0181455

Reference Help

Abstract


Chinese hamster ovary (CHO) cells are the most preferred mammalian host used for the bio-pharmaceutical production. A major challenge in metabolic engineering is to balance the flux of the tuned heterogonous metabolic pathway and achieve efficient metabolic response in a mammalian cellular system. Pyruvate carboxylase is an important network element for the cytoplasmic and mitochondrial metabolic pathway and efficiently contributes in enhancing the energy metabolism. The lactate accumulation in cell culture can be reduced by re-wiring of the pyruvate flux in engineered cells. In the present work, we over-expressed the yeast cytosolic pyruvate carboxylase (PYC2) enzyme in CHO cells to augment pyruvate flux towards the TCA cycle. The dual selection strategy is adopted for the screening and isolation of CHO clones containing varying number of PYC2 gene load and studied their cellular kinetics. The enhanced PYC2 expression has led to enhanced pyruvate flux which, thus, allowed reduced lactate accumulation up to 4 folds and significant increase in the cell density and culture longevity. With this result, engineered cells have shown a significant enhanced antibody expression up to 70% with improved product quality (~3 fold) as compared to the parental cells. The PYC2 engineering allowed overall improved cell performance with various advantages over parent cells in terms of pyruvate, glucose, lactate and cellular energy metabolism. This study provides a potential expression platform for a bio-therapeutic protein production in a controlled culture environment.

Reference Type
Journal Article
Authors
Gupta SK, Srivastava SK, Sharma A, Nalage VHH, Salvi D, Kushwaha H, Chitnis NB, Shukla P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference