Reference: Toh-e A, et al. (1978) Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae. Mol Gen Genet 162(2):139-49

Reference Help

Abstract


When the pH of growth medium containing a limited amount of inorganic phosphate is kept below 3.0, cells of Saccharomyces cerevisiae produce repressible alkaline phosphatase but no repressible acid phosphatase. The same cells produce acid phosphatase immediately on shifting the medium pH to 4.0 or above. Like intact cells, spheroplasts prepared from cells grown at pH 3.0 or 4.5 in medium with a limited amount of inorganic phosphate in suspension begin production of acid phosphatase immediately after pH shift from below 3.0 to 4.0 whereas sheroplasts from cells grown in inorganic phosphate-rich medium showed a prolonged lag period (3 h). The enzyme formation on the pH shift was sensitive to cycloheximide. No significant differences could be detected in cellular growth or in incorporation of 3H-L-lysine or 14C-adenine between cells cultivated at pH 3.0 and 4.5. These results along with the fact that the expression of structural genes of repressible acid and alkaline phosphatases is controlled by a common genetic regulatory system, at least in part, indicate that the genetic regulatory system operates to express the structural genes even at low pH, though the expression of repressible acid phosphatase is interrupted. Coupled experiments of temperature and pH shifts with the temperature-sensitive mutants of the regulatory genes suggest that the acidic pH affects the function of the cytoplasmic products of those genes in the expression of the structural gene. Based on these observations, a revised model involving the simultaneous functioning of the regulatory factors was suggested for the genetic regulation of repressible acid phosphatase synthesis.

Reference Type
Journal Article
Authors
Toh-e A, Kobayashi S, Oshima Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference