Reference: Papp L, et al. (2017) Expression pattern and phenotypic characterization of the mutant strain reveals target genes and processes regulated by pka1 in the dimorphic fission yeast Schizosaccharomyces japonicus. Curr Genet 63(3):487-497

Reference Help

Abstract


The cAMP cascade plays an important role in several biological processes. Thus, study of its molecular details can contribute to a better understanding of these processes, treatment of diseases, or even finding antifungal drug targets. To gain further information about the PKA pathway, and its evolutionarily conserved and species-specific features, the central regulator pka1 gene, which encodes the cAMP-dependent protein kinase catalytic subunit, was studied in the less known haplontic, dimorphic fission yeast Schizosaccharomyces japonicus. Namely, this species belongs to a highly divergent phylogenetic branch of fungi. Furthermore, S. japonicus had only a single copy pka1 gene in contrast to the budding yeasts. Therefore, the pka1 deleted mutant was created, whose RNA sequencing and phenotypic studies revealed that the Pka1 regulated at least 373 genes, among them further kinases, phosphatases and transcriptional regulators. It regulated elongation of hyphae, cell size, aging and stress response. Furthermore, half of the pka1 target genes seemed to be conserved in Schizosaccharomyces pombe and S. japonicus. However, there were oppositely regulated genes in the two closely related species. The target genes suggest that this single gene must be able to fulfill all the functions of TPK1-3 of Saccharomyces cerevisiae. Thus, our results shed light on certain similarities and differences of the PKA pathway of S. japonicus compared to the budding yeasts and confirmed the multifunctionality of the pka1 gene, but further experiments are needed to prove its involvement in the metabolic processes and transport.

Reference Type
Journal Article
Authors
Papp L, Sipiczki M, Miklós I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference