Reference: Marczynski GT, et al. (1989) Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro. Mol Cell Biol 9(8):3193-202

Reference Help

Abstract


We have extended an earlier observation that the TATA box for the nuclear GAL10 gene serves as a promoter for the mitochondrial RNA polymerase in in vitro transcription reactions (C. S. Winkley, M. J. Keller, and J. A. Jaehning, J. Biol. Chem. 260:14214-14223, 1985). In this work, we demonstrate that other nuclear genes also have upstream sequences that function in vitro as mitochondrial RNA polymerase promoters. These genes include the GAL7 and MEL1 genes, which are regulated in concert with the GAL10 gene, the sigma repetitive element, and the 2 microns plasmid origin of replication. We used in vitro transcription reactions to test a large number of nuclear DNA sequences that contain critical mitochondrial promoter sequences as defined by Biswas et al. (T. K. Biswas, J. C. Edwards, M. Rabinowitz, and G. S. Getz, J. Biol. Chem. 262:13690-13696, 1987). The results of these experiments allowed us to extend the definition of essential promoter elements. This extended sequence, -ACTATAAACGatcATAG-, was frequently found in the upstream regulatory regions of nuclear genes. On the basis of these observations, we hypothesized that either (i) a catalytic RNA polymerase related to the mitochondrial enzyme functions in the nucleus of the yeast cell or (ii) a DNA sequence recognition factor is shared by the two genetic compartments. By using cells deficient in the catalytic core of the mitochondrial RNA polymerase (rpo41-) and sensitive assays for transcripts initiating from the nuclear promoter sequences, we have conclusively ruled out a role for the catalytic RNA polymerase in synthesizing transcripts from all of the nuclear sequences analyzed. The possibility that a DNA sequence recognition factor functions in both the nucleus and the mitochondria remains to be tested.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Marczynski GT, Schultz PW, Jaehning JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference