Reference: Domitrovic T, et al. (2015) Experimental Evidence for a Revision in the Annotation of Putative Pyridoxamine 5'-Phosphate Oxidases P(N/M)P from Fungi. PLoS One 10(9):e0136761

Reference Help

Abstract


Pyridoxinamine 5'-phosphate oxidases (P(N/M)P oxidases) that bind flavin mononucleotide (FMN) and oxidize pyridoxine 5'-phosphate or pyridoxamine 5'-phosphate to form pyridoxal 5'-phosphate (PLP) are an important class of enzymes that play a central role in cell metabolism. Failure to generate an adequate supply of PLP is very detrimental to most organisms and is often clinically manifested as a neurological disorder in mammals. In this study, we analyzed the function of YLR456W and YPR172W, two homologous genes of unknown function from S. cerevisiae that have been annotated as putative P(N/M)P oxidases based on sequence homology. Different experimental approaches indicated that neither protein catalyzes PLP formation nor binds FMN. On the other hand, our analysis confirmed the enzymatic activity of Pdx3, the S. cerevisiae protein previously implicated in PLP biosynthesis by genetic and structural characterization. After a careful sequence analysis comparing the putative and confirmed P(N/M)P oxidases, we found that the protein domain (PF01243) that led to the YLR456W and YPR172W annotation is a poor indicator of P(N/M)P oxidase activity. We suggest that a combination of two Pfam domains (PF01243 and PF10590) present in Pdx3 and other confirmed P(N/M)P oxidases would be a stronger predictor of this molecular function. This work exemplifies the importance of experimental validation to rectify genome annotation and proposes a revision in the annotation of at least 400 sequences from a wide variety of fungal species that are homologous to YLR456W and are currently misrepresented as putative P(N/M)P oxidases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Domitrovic T, Raymundo DP, da Silva TF, Palhano FL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference