Reference: Liu J, et al. (2015) Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions. Genome Biol Evol 7(4):969-84

Reference Help

Abstract


The increase in phenotypic variability through gene expression noise is proposed to be an evolutionary strategy in selective environments. Differences in promoter-mediated noise between Saccharomyces cerevisiae strains could have been selected for thanks to the benefit conferred by gene expression heterogeneity in the stressful conditions, for instance, those experienced by industrial strains. Here, we used a genome-wide approach to identify promoters conferring high noise levels in the industrial wine strain EC1118. Many promoters of genes related to environmental factors were identified, some of them containing genetic variations compared with their counterpart in the laboratory strain S288c. Each variant of eight promoters has been fused to yeast-Enhanced Green Fluorescent Protein and integrated in the genome of both strains. Some industrial variants conferred higher expression associated, as expected, with lower noise, but other variants either increased or decreased expression without modifying variability, so that they might exhibit different levels of transcriptional-mediated noise at equal mean. At different induction conditions giving similar expression for both variants of the CUP1 promoter, we indeed observed higher noise with the industrial variant. Nevertheless, this difference was only observed in the industrial strain, revealing epistasis in the generation of promoter-mediated noise. Moreover, the increased expression variability conferred by this natural yeast promoter variant provided a clear benefit in the face of an environmental stress. Thus, modulation of gene expression noise by a combination of promoter modifications and trans-influences might be a possible adaptation mechanism in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Liu J, Martin-Yken H, Bigey F, Dequin S, François JM, Capp JP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence