Reference: Singh V, et al. (2014) Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. FEBS Lett 588(6):1044-52

Reference Help

Abstract


KP1019 comprises a class of ruthenium compounds having promising anticancer activity. Here, we investigated the molecular targets of KP1019 using Saccharomyces cerevisiae as a model organism. Our results revealed that in the absence of the N-terminal tail of histone H3, the growth inhibitory effect of KP1019 was markedly enhanced. Furthermore, H3K56A or rtt109Δ mutants exhibit hypersensitivity for KP1019. Moreover, KP1019 evicts histones from the mononucleosome and interacts specifically with histone H3. We have also shown that KP1019 treatment causes induction of Ribonucleotide Reductase (RNR) genes and degradation of Sml1p. Our results also suggest that DNA damage induced by KP1019 is primarily repaired through double-strand break repair (DSBR). In summary, KP1019 targets histone proteins, with important consequences for DNA damage responses and epigenetics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Singh V, Azad GK, Mandal P, Reddy MA, Tomar RS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence