Reference: Lange P and Wöhrmann K (1975) [Populationsgenetische Untersuchungen an Saccharomyces cerevisiae III. Theoretische Untersuchungen über die Bedeutung der Paarungsfähigkeit für die Populationsstruktur Population genetics of Saccharomyces cerevisiae. III. Theoretical investigations about the influence of the mating-ability on the population structure]. Theor Appl Genet 46(1):7-17

Reference Help

Abstract


This paper deals with the properties of a two-locus model constructed according to the lifecycle of the yeast Saccharomyces cerevisiae. In addition to the mating-type locus with two alleles, a second locus with two alleles was assumed. Further, we considered that the population can be composed of haploid and diploid cells.Of the population parameters involved in this model, there will be considered the influence of different mating-abilities of haploids on the population structure with regard to linkage and linkage disequilibrium.The main results are as follows: Assuming that more than two spores per ascus are formed which are able to mate, the frequencies of the mating-type alleles will adjust to a ratio of 1∶1. If the number of spores is less than two, the rare mating-type allele will be displaced by the common one. Under these conditions there is no change in the allele frequencies of the second locus unless the population is in a linkage disequilibrium. In this case the degree of the frequency change in the second locus depends on the difference in the ratio of the mating-types at the beginning, the linkage disequilibrium and the kind of linkage of the two loci. Differing mating-ability of the haploid genotypes has no influence on the equilibrium frequency of the mating-type locus. Under the assumption of multiplicative gene action the equilibrium allele frequencies of the second locus are strongly influenced by the epistatic component of the mating-ability. A permanent linkage disequilibrium can be maintained by distinct epistatic values, which increases with tighter linkage.If there is a permanent linkage disequilibrium, population fitness will not always reach its maximum.ZUSAMMENFASSUNG: In der vorliegenden Arbeit wurden die Eigenschaften eines Zwei-Locus-Modells untersucht, dem der Generationszyklus der Hefe, Saccharomyces cerevisiae, als Grundlage diente. Neben dem Paarungstyplocus mit seinen beiden Allelen a und α ist ein zweiter Locus mit zwei Allelen angenommen worden. Es wurde berücksichtigt, daß die Population sowohl aus haploiden als auch aus diploiden Individuen bestehen kann. Von den theoretisch möglichen wirksamen Populationsparametern wurden hier zunächst nur die Paarungsfähigkeit der Haploiden und die Koppelung in ihrem Einfluß auf die Populationsstruktur unter besonderer Berücksichtigung des Koppelungsgleichgewichtes untersucht. Es ergaben sich folgende Zusammenhänge: Unter der Voraussetzung, daß mehr als zwei Sporen pro Ascus entstehen, die die Fähigkeit zur Paarung besitzen, stellt sich ein Verhältnis der Paarungstypenallele von 1:1 ein.Ist die Anzahl der Sporen pro Ascus kleiner als zwei, so wird das seltene Paarungstypallel durch das häufigere verdrängt.Die Allelfrequenzen eines zweiten Locus ändern sich unter diesen Bedingungen nicht, es sei denn, daß in der Ausgangspopulation ein Koppelungsungleichgewicht bestanden hat. Das Ausmaß der Änderung ist dann davon abhängig, wie groß die Differenz der Frequenzen der Paarungstypallele in der Ausgangspopulation und der Gleichgewichtspopulation ist, wie groß das anfängliche Koppelungsungleichgewicht ist und wie eng beide Loci gekoppelt sind.Wenn die verschiedenen haploiden Genotypen eine unterschiedliche Paarungsfähigkeit besitzen, hat dies auf die Gleichgewichtsfrequenz der Paarungstypenallele keinen Einfluß. Die Frequenzen der Allele des zweiten Locus sind im Gleichgewicht bei Annahme multiplikativer Genwirkung jedoch stark von der epistatischen Komponente der Paarungsfähigkeit abhängig. Bei bestimmten Werten für E wird ein permanentes Koppelungsgleichgewicht aufrechterhalten, das mit zunehmender Kopplung größer wird.Die Populationsfitness erreicht bei permanentem Koppelungsgleichgewicht nicht immer ihr Maximum.

Reference Type
English Abstract | Journal Article
Authors
Lange P, Wöhrmann K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference