Reference: Laskay ÜA, et al. (2013) Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments. J Proteome Res 12(12):5558-69

Reference Help

Abstract


Mass spectrometry (MS)-based bottom-up proteomics (BUP) is currently the method of choice for large-scale identification and characterization of proteins present in complex samples, such as cell lysates, body fluids, or tissues. Technically, BUP relies on MS analysis of complex mixtures of small, <3 kDa, peptides resulting from whole proteome digestion. Because of the extremely high sample complexity, further developments of detection methods and sample preparation techniques are necessary. In recent years, a number of alternative approaches such as middle-down proteomics (MDP, addressing up to 15 kDa peptides) and top-down proteomics (TDP, addressing proteins exceeding 15 kDa) have been gaining particular interest. Here we report on the bioinformatics study of both common and less frequently employed digestion procedures for complex protein mixtures specifically targeting the MDP approach. The aim of this study was to maximize the yield of protein structure information from MS data by optimizing peptide size distribution and sequence specificity. We classified peptides into four categories based on molecular weight: 0.6-3 (classical BUP), 3-7 (extended BUP), 7-15 kDa (MDP), and >15 kDa (TDP). Because of instrumentation-related considerations, we first advocate for the extended BUP approach as the potential near-future improvement of BUP. Therefore, we chose to optimize the number of unique peptides in the 3-7 kDa range while maximizing the number of represented proteins. The present study considers human, yeast, and bacterial proteomes. Results of the study can be further used for designing extended BUP or MDP experimental workflows.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Laskay ÜA, Lobas AA, Srzentić K, Gorshkov MV, Tsybin YO
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference