Reference: Mannervik B, et al. (1975) Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents. Eur J Biochem 53(2):327-33

Reference Help

Abstract


Glyoxalase I from porcine erythrocytes and from yeast is inactivated by the amino-group reagents 1-fluoro-2,4-dinitrobenzene, 5-dimethylaminonaphthalene-1-sulfonyl chloride, and 2,4,6-trinitrobenzenesulfonate (N-3ph-S). The inactivation follows pseudo-first-order kinetics, and the apparent first-order rate constant increases with pH, indicating that the basic form of a nucleophilic group is modified. The effect of increasing the inactivator concentration was tested with N-3PH-S, and it was found that the apparent rate constant increased to a limiting value. Such a result is consistent with a mechanism involving formation of a reversible inactivator x enzyme complex prior to the actual inactivation. Experiments with erythrocyte glyoxalase I and a variety of sulfhydryl-group reagents failed to show a dependence on sulfhydryl groups for catalytic activity, in contrast to previous results with the yeast enzyme. These experiments seem to exclude the possibility that essential sulfhydryl groups of the erythrocyte enzyme are modified by the amino-group reagents. Failure of reactivation of yeast glyoxalase I, and the similarities with the erythrocyte enzyme suggest that yeast glyoxalase I is not modified at essential sulfhydryl groups either by the latter reagents. This assumption has further support from experiments involving simultaneous inactivation with amino and sulfhydryl-group reagents. The results are consistent with the interpretation that amino groups of glyoxalase I are essential for catalytic activity. Glutathione derivatives, which are reversible competitive inhibitors of glyoxalase I, were found to protect the enzyme against inactivation by amino-group reagents. However, the concentration required for half-maximal protection was considerably higher than the inhibition constant of the reversible inhibition, which indicates that at least two molecules of the protector must be bound to the enzyme before full protection is obtained.

Reference Type
Journal Article
Authors
Mannervik B, Marmstål E, Ekwall K, Górna-Hall B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference