Reference: Sasidharan K, et al. (2012) Time-structure of the yeast metabolism in vivo. Adv Exp Med Biol 736:359-79

Reference Help

Abstract


All previous studies on the yeast metabolome have yielded a plethora of information on the components, function and organisation of low molecular mass and macromolecular components involved in the cellular metabolic network. Here we emphasise that an understanding of the global dynamics of the metabolome in vivo requires elucidation of the temporal dynamics of metabolic processes on many time-scales. We illustrate this using the 40 min oscillation in respiratory activity displayed in auto-synchronous continuously grown cultures of Saccharomyces cerevisiae, where respiration cycles between a phase of increased respiration (oxidative phase) and decreased respiration (reductive phase). Thereby an ultradian clock, i.e. a timekeeping device that runs through many cycles during one day, is involved in the co-ordination of the vast majority of events and processes in yeast. Through continuous online measurements, we first show that mitochondrial and redox physiology are intertwined to produce the temporal landscape on which cellular events occur. Next we look at the higher order processes of DNA duplication and mitochondrial structure to reveal that both events are choreographed during the respiratory cycles. Furthermore, spectral analysis using the discrete Fourier transformation of high-resolution (10 Hz) time-series of NAD(P)H confirms the existence of higher frequency components of biological origin and that these follow a scale-free architecture even in stable oscillating modes. A different signal-processing approach using discrete wavelet transformations (DWT) indicates that there is a significant contribution to the overall signal from ` ~5, ~ 10 and ~ 20-minutes cycles and the amplitudes of these cycles are phase-dependent. Further investigation (derivative of Gaussian continuous wavelet transformation) reveals that the observed 20-minutes cycles are actually confined to the reductive phase and consist of two ~15-minutes cycles. Moreover, the 5 and 10-minutes cycles are restricted to the oxidative phase of the cycle. The mitochondrial origin of these signals was confirmed by pulse-injection of the cytochrome c oxidase inhibitor H(2)S. We next discuss how these multi-oscillatory states can impinge on the apparently complex reactome (represented as a phase diagram of 1,650 chemical species that show oscillatory behaviour). We conclude that biological processes can be considerably more comprehensible when dynamic in vivo time-structure is taken into account.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sasidharan K, Tomita M, Aon M, Lloyd D, Murray DB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference