Reference: Gouw JW, et al. (2011) Metabolic labeling of model organisms using heavy nitrogen (15N). Methods Mol Biol 753:29-42

Reference Help

Abstract


Quantitative proteomics aims to identify and quantify proteins in cells or organisms that have been obtained from different biological origin (e.g., "healthy vs. diseased"), that have received different treatments, or that have different genetic backgrounds. Protein expression levels can be quantified by labeling proteins with stable isotopes, followed by mass spectrometric analysis. Stable isotopes can be introduced in vitro by reacting proteins or peptides with isotope-coded reagents (e.g., iTRAQ, reductive methylation). A preferred way, however, is the metabolic incorporation of heavy isotopes into cells or organisms by providing the label, in the form of amino acids (such as in SILAC) or salts, in the growth media. The advantage of in vivo labeling is that it does not suffer from side reactions or incomplete labeling that might occur in chemical derivatization. In addition, metabolic labeling occurs at the earliest possible moment in the sample preparation process, thereby minimizing the error in quantitation. Labeling with the heavy stable isotope of nitrogen (i.e., (15)N) provides an efficient way for accurate protein quantitation. Where the application of SILAC is mostly restricted to cell culture, (15)N labeling can be used for micro-organisms as well as a number of higher (multicellular) organisms. The most prominent examples of the latter are Caenorhabditis elegans and Drosophila (fruit fly), two important model organisms for a range of regulatory processes underlying developmental biology. Here we describe in detail the labeling with (15)N atoms, with a particular focus on fruit flies and C. elegans. We also describe methods for the identification and quantitation of (15)N-labeled proteins by mass spectrometry and bioinformatic analysis.

Reference Type
Journal Article
Authors
Gouw JW, Tops BB, Krijgsveld J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference