Reference: Haile JD and Kennelly PJ (2011) The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 511(1-2):56-63

Reference Help

Abstract


The piD261/Bud32 protein kinases are universal amongst the members of the Eucarya and Archaea. Despite the fact that phylogenetic analyses indicate that the piD261/Bud32 protein kinases descend directly from the primordial ancestor of the "eukaryotic" protein kinase superfamily, our knowledge of their physiological role is relatively fragmentary and largely limited to two eucaryal representatives: piD261/Bud32 from yeast and the p53-related protein kinase from humans. A deduced archaeal homolog, SsoPK5, is encoded by open reading frame sso0433 from the acidothermophile Sulfolobus solfataricus. Recombinantly-expressed SsoPK5 exhibited protein kinase activity, with a noticeable preference for phosphorylating proteins of acidic character and for Mn(2+) as cofactor. The protein kinase also can phosphorylate itself on serine and threonine residues. The activity of rSsoPK5 was increased several-fold upon preincubation with either millimolar concentrations of 5'-AMP or submicromolar concentrations of ADP-ribose. Other mono- and di-nucleotides were ineffective. While activation was enhanced by the presence of ATP, no autophosphorylation of the protein kinase could be detected prior to addition of exogenous substrate proteins. We therefore suggest that ADP-ribose acts by evoking a conformational transition in the enzyme. Activation by ADP-ribose represents a potential regulatory link between chromatin remodeling and the activity of SsoPK5.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Haile JD, Kennelly PJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference