Reference: Wittenberg C, et al. (1990) G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62(2):225-37

Reference Help

Abstract


The S. cerevisiae CLN genes encode cyclin homologs essential for progression from G1 to S phase. The CLN2 gene encodes a 62 kd polypeptide that accumulates periodically, peaking during G1 and decreasing rapidly thereafter, and is rapidly lost following exposure of cells to mating pheromone. Cln2 abundance can be explained by the G1-specific accumulation of the CLN2 transcript coupled with instability of the Cln2 protein. The abundance of the CLN1 and CLN2 transcripts increases greater than 5-fold during the G1 interval, decreasing dramatically as cells enter S phase. Both transcripts decrease in cells responding to mating pheromone. Finally, we demonstrate that the Cln2 polypeptide interacts with p34CDC28 to form an active protein kinase complex. This physical interaction is consistent with the genetic interaction between the CLN genes and CDC28 and suggests that Cln proteins are an essential component of the active protein kinase complex required for the G1 to S transition.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wittenberg C, Sugimoto K, Reed SI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence