Reference: Cooper JB, et al. (1990) X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J Mol Biol 214(1):199-222

Reference Help

Abstract


The molecular structure of the hexagonal crystal form of porcine pepsin (EC 3.4.23.1), an aspartic proteinase from the gastric mucosa, has been determined by molecular replacement using the fungal enzyme, penicillopepsin (EC 3.4.23.6), as the search model. This defined the space group as P6522 and refinement led to an R-factor of 0.190 at 2.3 A resolution. The positions of 2425 non-hydrogen protein atoms in 326 residues have been determined and the model contains 371 water molecules. The structure is bilobal, consisting of two predominantly beta-sheet lobes which, as in other aspartic proteinases, are related by a pseudo 2-fold axis. The strands of the mixed beta-sheets (1N and 1C) of each lobe are related by an intra-lobe topological 2-fold symmetry. Two further beta-sheets, 2N and 2C, are each composed of two topologically related beta-hairpins folded below the 1N and 1C sheets. A further six-stranded sheet (3) spans the two lobes and forms a structure resembling an arch upon which the four other sheets reside. The interface between sheets 1N and 1C forms the catalytic centre consisting of absolutely conserved aspartate residues 32 and 215, which are shielded from solvent by a beta-hairpin loop (75 to 78). The crystal structure of a mammalian aspartic proteinase indicates that interactions with substrate may be more extensive on the prime side of the active site cleft than in the fungal enzymes and involve Tyr189 and the loop 290 to 295, perhaps contributing to the transpeptidase activity of pepsin and the specificity of the renins. Comparison with the high-resolution structure of pepsinogen gives a root-mean-square deviation of 0.9 A and reveals that, in addition to local rearrangement at the active site, there appears to be a rigid group movement of part of the C-terminal lobe of pepsin towards the cleft on activation. A large proportion of the absolutely conserved residues in aspartic proteinases are polar and buried. An examination of the pepsin structure reveals that these side-chains are involved in hydrogen-bond interactions with either the main chain of the protein or other conserved side-chains of the enzyme or propart.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Cooper JB, Khan G, Taylor G, Tickle IJ, Blundell TL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference