Reference: Liccioli T, et al. (2011) A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J Ind Microbiol Biotechnol 38(7):833-43

Reference Help

Abstract


The yeast Saccharomyces cerevisiae has a fundamental role in fermenting grape juice to wine. During alcoholic fermentation its catabolic activity converts sugars (which in grape juice are a near equal ratio of glucose and fructose) and other grape compounds into ethanol, carbon dioxide and sensorily important metabolites. However, S. cerevisiae typically utilises glucose and fructose with different efficiency: glucose is preferred and is consumed at a higher rate than fructose. This results in an increasing difference between the concentrations of glucose and fructose during fermentation. In this study 20 commercially available strains were investigated to determine their relative abilities to utilise glucose and fructose. Parameters measured included fermentation duration and the kinetics of utilisation of fructose when supplied as sole carbon source or in an equimolar mix with glucose. The data were then analysed using mathematical calculations in an effort to identify fermentation attributes which were indicative of overall fructose utilisation and fermentation performance. Fermentation durations ranged from 74.6 to over 150 h, with clear differences in the degree to which glucose utilisation was preferential. Given this variability we sought to gain a more holistic indication of strain performance that was independent of fermentation rate and therefore utilized the area under the curve (AUC) of fermentation of individual or combined sugars. In this way it was possible to rank the 20 strains for their ability to consume fructose relative to glucose. Moreover, it was shown that fermentations performed in media containing fructose as sole carbon source did not predict the fructophilicity of strains in wine-like conditions (equimolar mixture of glucose and fructose). This work provides important information for programs which seek to generate strains that are faster or more reliable fermenters.

Reference Type
Journal Article
Authors
Liccioli T, Chambers PJ, Jiranek V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference