Reference: Mirzaei M, et al. (2010) Microfluidic perfusion system for culturing and imaging yeast cell microarrays and rapidly exchanging media. Lab Chip 10(18):2449-57

Reference Help

Abstract


High resolution live cell microscopy is increasingly used to detect cellular dynamics in response to drugs and chemicals, but it depends on complex and expensive liquid handling devices that have limited its wider adoption. Here, we present a microfluidic perfusion system that is built without using specialized microfabrication infrastructure, simple to use because only a pipette is needed for liquid handling, and yet allows for rapid media exchange and simultaneous fluorescence microscopy imaging. Yeast cells may be introduced from a culture, or spotted as arrays on a coverslip, and are sandwiched with a 20 mum thick track-etched membrane. A second coverslip and a mesh with 120 mum porosity are placed on top, forming a microfluidic conduit for lateral flow of solutions by capillary effects. Solutions introduced through the inlet flow through the mesh and chemicals diffuse vertically across the membrane to the cells trapped below. Solutions are exchanged by adding a new sample to the inlet. Using this system, we studied the dynamic response of F-actin in living yeast expressing Sac6-EGFP-a protein associated with discrete F-actin structures called "patches"-to the drug latrunculin A, a well known inhibitor of actin polymerization. We observed that the patches disappeared in 85% of the cells within 5 min, and re-assembled in 45 min following exchange of the drug with media. The perfusion system presented here is a simple, inexpensive device suited for analysis of drug dose-response and regeneration of single cells and arrays of cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mirzaei M, Pla-Roca M, Safavieh R, Nazarova E, Safavieh M, Li H, Vogel J, Juncker D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference