Reference: Habibi M, et al. (2010) Two-dimensional dielectric spectroscopy: implementation and validation of a scanning open-ended coaxial probe. Rev Sci Instrum 81(7):075108

Reference Help

Abstract


Dielectric spectroscopy is a powerful tool for characterizing and classifying materials based on their electrical properties. In order to perform dielectric measurements on a sample with spatially varying properties, the measuring probe typically is repositioned manually on the surface of the sample for each measurement. In this paper, we present a novel technique, based on a reconfigurable multielectrode array, which facilitates the recording of measurements at various different spatial locations without physically moving the measuring electrodes. By electronically selecting one of the electrodes as the inner line and connecting the remainder of the electrodes together to form the outer line, an open-ended coaxial probe is created, which can be repositioned by simply selecting different electrode combinations; hence the name of a "traveling" coaxial probe. The geometric factor, or the cell constant, of each coaxial probe in the array was estimated from measurements on saline solutions with known electrical characteristics. In order to validate the setup for measurement of dielectric properties of biological cells, the plasma membrane capacitance and cytoplasm conductivity of yeast cells suspended in aqueous solutions were measured and compared to results from published reports. Dielectric spectroscopy imaging was carried out on tissue phantoms made of an agar gel with inclusions consisting of concentrated yeast cell suspensions. Measurements were performed on the phantoms, and the dielectric data were spatially mapped with respect to electrode location. The spatial electrical data correlated precisely with locations of yeast cell inclusions within the phantoms.

Reference Type
Journal Article | Validation Study
Authors
Habibi M, Klemer DP, Raicu V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference